
redact

Alexandre Pauwels, Hugh Whelan

Oct 27, 2021





INTRODUCTION

1 Getting Started 1

2 Overview 3

3 Client 7

4 Storage 15

5 Cryptography 17

6 Building a Website With Redact 19

7 Advanced Features 25

i



ii



CHAPTER

ONE

GETTING STARTED

Broadly speaking, the steps to get started with Redact are as follows:

1. Get access to a redact-store instance

2. Install the redact-client locally on a device

3. Point your browser to a Redact-enabled website

1.1 Setup Redact-store

The storage service can be either self-hosted or provided by a third-party. Since it only stores encrypted data, the
provider of the storage service does not need to be trusted, but should provide a reasonable level of protection against
unauthorized requests.

A self-hosted storage is fairly easy to setup, and primarily involves procuring a database (currently only MongoDB is
supported) and standing up the redact-store server to connect to it.

A third-party storage will simply provide a URL for the Client to connect to.

1.1.1 Self-hosted Storage

1. Get access to a MongoDB instance

• Sign up for a free, fully-managed instance at mongodb.com (easy, quick)

• Set up an instance on your local device or host your own instance (harder, time-consuming, more customiz-
able)

• Minimum supported MongoDB version is 3.6+

• If running MongoDB locally and the storage cannot connect, try using 127.0.0.1 in the connection string
instead of a hostname

2. Install Rust: https://www.rust-lang.org/tools/install

3. git clone https://github.com/pauwels-labs/redact-store.git

4. echo "export REDACT_DB_URL=\"<mongo connection string>\"" >> config/config.env

5. echo "export REDACT_DB_NAME=\"<db name>\"" >> config/config.env

6. source config/config.env

7. cargo r

The port and address listened on by the storage server will be provided to the client.

1

https://github.com/pauwels-labs/redact-store
https://github.com/pauwels-labs/redact-client
https://mongodb.com
https://www.rust-lang.org/tools/install


redact

Support multimedia (e.g. images, video)

Redact leverages object storage services in order to store large chunks of data that are unlikely or difficult to fit in a
traditional database.

Currently, the only supported object storage is a Google Cloud Storage bucket.

In order to add this functionality to your storer, do the following:

1. Sign up for Google Cloud and provision a Google Cloud Storage bucket

2. Go to the Permissions tab of the bucket details page and add a new principal with Storage Legacy Bucket Writer
permissions

3. Go to the IAM & Admin section of Google Cloud and click on Service Accounts

4. Click on Keys > Create new key, and create a new JSON key

5. Download the key and save it to a safe place on your computer

6. echo "export SERVICE_ACCOUNT=\"<path to file downloaded>\"" >> config/config.env

7. echo "export REDACT_GOOGLE_STORAGE_BUCKET_NAME=\"<bucket name>\"" >> config/config.
env

8. source config/config.env

9. cargo r

1.2 Install redact-client

1. git clone https://github.com/pauwels-labs/redact-client.git

2. Provide the Storage URL in config/config.yaml#storage.url

• If you set-up your own storage server using the steps above, the URL will likely be https://localhost:8081

• If you set-up your own storage server, notice that the config allows for specifying a custom server CA
certificate at storage.tls.server.ca.filepath. You MUST copy the CA certificate generated by the
storage server to this location. Within the redact-store directory, it should be located at tls/server/
cert/ca.pem, copy this file to the client at certs/storer-ca.pem.

4. cargo r

1.3 Visit Redact-enabled website

We have an example website that allows you to demo Redact’s current feature-set called Redact Feed, which allows you
to post text and multimedia and see those posts displayed. Redact Feed will soon support data sharing and other social
features.

Once the Client is setup locally and points to a working storage instance, Redact-enabled websites will “just work”
(TM). The Client handles generation and coordination of cryptographic material with no further input.

Warning: Redact currently only supports storing keys unencrypted on the file system. Support for hardware and
software key vaults is upcoming.

2 Chapter 1. Getting Started

https://cloud.google.com/storage
https://localhost:8081
https://redact-feed-ui.dev.pauwelslabs.com


CHAPTER

TWO

OVERVIEW

The best way to begin understanding how Redact works is to understand, at a high-level, what the general flow of
information is when a user visits a Redact-enabled website. Below is a diagram outlining this flow.

1. Alice opens her browser and visits a Redact-enabled website (e.g. www.foo.com).

2. The website’s server responds with the contents of the page, which include <iframe> elements for instances
where the website displays “Redacted” data.

3. Alice’s browser issues a request to the local Client for each iframe, each of which represents a different piece of
secured data.

4. The Client receives each request and forwards them to the Storage.

5. The Storage instance responds to each request with the data it has stored at that path. These pieces of data are
typically encrypted and cannot be decrypted by the Storage instance itself.

6. The Client decrypts the encrypted data, then responds to the local request from the browser with the decrypted
text in a secure iframe. The user can now see the secure data, but the host website cannot.

3



redact

2.1 Secure <iframe>

Although there already exist several end-to-end encrypted applications in use commercially today, none of them quite
solve the problem of endpoint security. These services provide strong security both in transit and at rest using their
encryption protocols, but there still remains the issue of displaying the actual data to the user: data must be decrypted
and placed on the screen at some point, and existing end-to-end encryption applications maintain control over this
process. This means there is a point in the data pipeline where the user must trust the operator of the service not to
inject malicious code and exfiltrate plaintext data.

Redact solves this issue by limiting the trusted platform to just the browser, rather than all the websites visited on the
browser. The Client leverages <iframe> elements and CSRF tokens to allow websites to easily interact with protected
data without having to, or in fact being able to, actually see it at any point. This technique works using technologies
that are well-proven and decades old, and requires no Javascript.

The general flow to request data to be displayed works as such:

1. The website places an <iframe> element as a placeholder for the data:

<iframe src="/unsecure/data/.profile.firstName."></iframe>

There are additional parameters that can be provided which further customize the Client’s response, but are left
out here for simplicity.

2. The Client receives the request and does four things:

1. Generates a random 256-bit session token.

2. Attaches a session to the request.

3. Stores the token in the session.

4. Responds to the request with a session cookie containing the ID of the request’s session and an HTML page
containing another <iframe>, attaching the token generated in step 1 to the end of the URL path, like this:

<iframe src="/secure/data/.profile.firstName./
→˓498DF68A39A51DE648799EE13CD26D2163863FC5F43814B8895B78BBA45935A0"></iframe>(continues on next page)

4 Chapter 2. Overview



redact

(continued from previous page)

3. Upon rendering the iframe response, the browser makes another request to the Client, once again according to
the src of the inner <iframe>. The Client receives the request and attempts to respond with the decrypted data:

1. Retrieves the session based on the session ID provided in the request cookie header.

2. Compare the token in the URL of the request with the token stored in the session.

3. If the tokens match, it proceeds with fetching the requested data, decrypting it, and responding with an
HTML page containing the plaintext. If the tokens do not match, the request is rejected.

2.1. Secure <iframe> 5



redact

This process allows the Client to ensure that the only time it responds with plaintext data is when the request for the
data is coming from itself.

Imagine that a malicious website, acme.com, would like to exfiltrate Alice’s redacted data when she visits. In order
to do so, they place a script on acme.com that runs when Alice visits the website and makes an AJAX request to the
Alice’s Client for data at the path .profile.firstName.. This request succeeds and responds with a 200 status code,
but the returned HTML just contains an <iframe> element, this time with a token appended to the end of the src
attribute. The script then makes a second AJAX request with the token appended at the end this time.

This request will fail. It isn’t enough to provide the correct token at the end of the request path, that request must also
be paired with a session that contains the same token. This pairing occurs by attaching the session ID returned by
the Client in the first request as a cookie header in the second request. Thanks to all modern browsers’ cross-origin
resource sharing (CORS) protections, it is impossible for a website located at acme.com to fetch the session ID set by
a website not at the same domain.

Warning: Cookies set by a domain other than the primary domain being visited are classified as “third-party
cookies” by browser vendors. Browsers are increasingly placing limitations on these cookies, the latest being that
such cookies MUST be transferred over a TLS connection. Currently the connection between browser and Client,
both on the user’s local device, is not secured by TLS. In the future, it may be necessary to add a self-signed
certificate generated by the Client to the browser in order to secure that connection.

6 Chapter 2. Overview



CHAPTER

THREE

CLIENT

The purpose of the Client is to host a small server on the user’s device (e.g. phone, laptop) to respond to requests
for private data. It listens on a local port, currently defaulted to ::8080, and responds to these requests with a secure
<iframe> buffer that displays the data without allowing the website to read it back to itself.

Note: For more information on how the secure <iframe> buffers work see Secure <iframe>.

3.1 API

3.1.1 GET /unsecure/data/<path>

An unsecure request to the client for data at a given path. The response is not the data itself, but an HTML document
with an iframe which makes a secure request to retrieve the data.

Path Parameters

Parameter Required? Description Example
path Required A jsonpath-style string prepended and appended

by a period which represents the path of the data
.someObj.
someVal.

7



redact

Query Parameters

Pa-
rame-
ter

Required? Description De-
fault

Example

css Optional A URL-encoded CSS block meant to style the
displayed data. The HTML to style can be
found here.

iframe%7Bborder%3Anone%3B%7D

edit Optional A boolean indicating whether the data will be
displayed in an editable form field. If true,
the value will be displayed in a submittable
input box appropriate for its data type.

false true

data_typeRequired specifies the type of data to expect; this is par-
ticularly useful when creating new data that
does not yet have a type. The value can be
one of:

• Bool
• U64
• I64
• F64
• String
• Media

– A Binary file that can be rendered in the browser. Currently supported file types are:

∗ image/jpeg
∗ image/png
∗ image/gif
∗ image/apng
∗ image/avif
∗ image/svg+xml
∗ image/webp
∗ video/mpeg
∗ video/mp4

String

relay_urlOptional the URL endpoint to which a POST HTTP re-
quest will be sent upon submission of editable
data. This would typically be a URL con-
trolled by the host of the Redact-enabled web-
site and used for internal bookkeeping.

https://foo.com/
redact/relay

js_messageOptional A base64-encoded and URL-encoded mes-
sage which the editable Redact field will send
to the parent page after data is successfully
submitted. Refer to JS Messaging for more
details.

Y3JlYXRlZA%3D%3D

js_height_msg_prefixOptional A base64-encoded and URL-encoded mes-
sage which a displayed Redact field will
prepend to the pixel height of the rendered
data, then send to the parent page. This can
be used to dynamically adjust the height of a
redact iframe on a web page based on the size
of the rendered data.

aGVpZ2h0Oi5hYmMuOg%3D%3D

8 Chapter 3. Client

https://github.com/pauwels-labs/redact-client/tree/main/static/secure.handlebars


redact

3.1.2 GET /secure/data/<path>/<token>

An secure request to the client for data at a given path. The response is and HTML document displaying the contents
of the data.

Header Parameters

Header Name Required? Description
Cookie sid Required The session ID is used internally by the Client to associate the re-

quest with a session in its session store.

Path Parameters

Parameter Required? Description Example
path Required A jsonpath-style string prepended and appended

by a period which represents the path of the data
.someObj.
someVal.

token Required A random, 256-bit, upper-case alphanumeric
CSRF token that is generated and used internally
by the Client

Query Parameters

Note: These query parameters are identical to those of GET /data/<path> and are typically automatically included
in this request by the Client.

3.1. API 9



redact

Pa-
rame-
ter

Required? Description De-
fault

Example

css Optional A URL-encoded CSS block meant to style the
displayed data. The HTML to style can be
found here.

iframe%7Bborder%3Anone%3B%7D

edit Optional A boolean indicating whether the data will be
displayed in an editable form field. If true,
the value will be displayed in a submittable
input box appropriate for its data type.

false true

data_typeRequired specifies the type of data to expect; this is par-
ticularly useful when creating new data that
does not yet have a type. The value can be
one of:

• Bool
• U64
• I64
• F64
• String
• Media

– A Binary file that can be rendered in the browser. Currently supported file types are:

∗ image/jpeg
∗ image/png
∗ image/gif
∗ image/apng
∗ image/avif
∗ image/svg+xml
∗ image/webp
∗ video/mpeg
∗ video/mp4

String

relay_urlOptional the URL endpoint to which a POST HTTP re-
quest will be sent upon submission of editable
data. This would typically be a URL con-
trolled by the host of the Redact-enabled web-
site and used for internal bookkeeping.

https://foo.com/
redact/relay

js_messageOptional A base64-encoded and URL-encoded mes-
sage which the editable Redact field will send
to the parent page after data is successfully
submitted. Refer to JS Messaging for more
details.

Y3JlYXRlZA%3D%3D

10 Chapter 3. Client

https://github.com/pauwels-labs/redact-client/tree/main/static/secure.handlebars


redact

3.1.3 POST /secure/data/<token>

A secure request to the client to update existing data or create new data at a given path.

Header Parameters

Header Name Required? Description
Cookie sid Required The session ID is used internally by the Client to associate the re-

quest with a session in its session store.
Content-Type Required

• x-www-form-urlencoded: For types other than Media
• multipart/form-data: For the Media data type.

Path Parameters

Parameter Required? Description Example
token Required A random, 256-bit, upper-case alphanumeric

CSRF token that is generated and used internally
by the Client

Query Parameters

Pa-
rame-
ter

Required? Description De-
fault

Example

css Optional A URL-encoded CSS block meant to style the
displayed data. The HTML to style can be
found here.

iframe%7Bborder%3Anone%3B%7D

edit Optional A boolean indicating whether the data will be
displayed in an editable form field. If true,
the value will be displayed in a submittable
input box appropriate for its data type.

false true

relay_urlOptional the URL endpoint to which a POST HTTP re-
quest will be sent upon submission of editable
data. This would typically be a URL con-
trolled by the host of the Redact-enabled web-
site and used for internal bookkeeping.

https://foo.com/
redact/relay

3.1. API 11

https://github.com/pauwels-labs/redact-client/tree/main/static/secure.handlebars


redact

Body Parameters

Param-
eter

Required? Description Example

path Required a jsonpath-style string prepended and appended by
a period

.someObj.someVal.

value Required The value of the data being submitted String
value_typeRequired Specifies the type of data to expect; this is partic-

ularly useful when creating new data that does not
yet have a type. The value can be one of:

• Bool
• U64
• I64
• F64
• String
• Media

– A Binary file that can be rendered in the browser. Currently supported file types are:

∗ image/jpeg
∗ image/png
∗ image/gif
∗ image/apng
∗ image/avif
∗ image/svg+xml
∗ image/webp
∗ video/mpeg
∗ video/mp4

String

3.1.4 POST /proxy

Retrieves the response of a GET request to a given URL, which is made via the client with mutual TLS. The root
domain of the URL requested must match the root domain of the request’s Origin header value. For more information
on how to use the Proxy API, see User Sessions.

Header Parameters

Header Name Required? Description
Origin Required
Content-Type Required Must be: application/json

12 Chapter 3. Client



redact

Body Parameters

Param-
eter

Required? Description Example

host_url Required The URL to which to make a GET request https://foo.com/redact/
session_create

3.1. API 13



redact

14 Chapter 3. Client



CHAPTER

FOUR

STORAGE

The Storage’s purpose is to provide a public interface for the Client to perform CRUD operations on encrypted data.
It provides a stable, public API, along with an authentication and authorization layer that allows clients to request or
modify the stored data.

An important note is that the owner of the Storage server does not need to be trusted. The Client encrypts stored data
before sending it to storage, meaning that the storage server only ever handles ciphertexts (unless the Client is purpose-
fully storing public, plaintext information). This allows operation of a multi-tenant storage service to be delegated to a
third-party, reducing the burden on users.

Warning: Currently, the storage interface is only implemented for MongoDB. In the future, other database types
will be supported.

4.1 API

4.1.1 GET /<path>

Retrieve data at a given path.

Path Parameters

Parameter Required? Description Example
path Required A jsonpath-style string prepended and appended

by a period which represents the path of the data
.someObj.
someVal.

4.1.2 POST /

Upsert data at a given path.

15



redact

Header Parameters

Header Name Required? Description
Content-Type Required Must be: application/json

Body Parameters

The body of the POST request should be a JSON-serialized Entry struct. The definition of an Entry can be found
here.

16 Chapter 4. Storage

https://github.com/pauwels-labs/redact-crypto/blob/main/src/entry.rs


CHAPTER

FIVE

CRYPTOGRAPHY

In order to secure data and provide authentication and authorization services, Redact leverages several cryptographic
systems. Asymmetric keys are used to create unique identities that can be used to identify users or machines across
the Redact ecosystem. Symmetric keys are used to encrypt and decrypt user data. By combining these two concepts,
Redact can create portable encrypted data that can be consumed by any device owned by a particular user.

Note: All cryptographic algorithms are currently provided by libsodium. Symmetric keys use its xsalsa20poly1305
algorithm. Asymmetric keys use its curve25519xsalsa20poly1305 algorithm.

In the future, other backing cryptographic libraries and algorithms will be supported.

5.1 Identity

Core to the Redact architecture is the concept of identity. In order for a user to give or deny access to a particular piece
of data, they must at all times be capable of identifying who is requesting their data and what permissions this user has.
In order to avoid centralization and dependance on a managed service to keep track of who has access to what, Redact
uses self-sovereign identities in the form of asymmetric keypairs.

At the most basic level, all users have their own keypair with a self-signed client certificate. They can use this keypair
and certificate to make anonymous requests to services that support anonymity. These requests are made using mutual
TLS to share the identity of the user. For example, when the Client requests data from a storage server, or relays a
message to a website host, it does so using this client certificate.

In many cases, however, a service may require some form of further authentication. For example, an internal company
website may require that only employees of the company be capable of viewing the site. To indicate that the user
belongs to a particular group, the keypair can be signed by a different certificate authority. This certificate can also
have custom metadata added that can further identify and authorize the user.

5.2 Encryption

Redact leverages encryption to minimize the amount of time and places that your data is available in plaintext. Its
encryption framework relies on two crucial invariants:

1. Private data is only decrypted by the Client.

2. Private data never exits the Client in plaintext.

By following these two rules, Redact ensures that the attack surface for exfiltrating private data remains as small as
possible.

17



redact

18 Chapter 5. Cryptography



CHAPTER

SIX

BUILDING A WEBSITE WITH REDACT

This section describes in detail how to build a simple website with redacted data. The Redact codebase is currently in
alpha, and supports displaying and storing strings, numbers, and booleans. Sharing data between Redact users is under
development and planned for a future release, but is included in this document because it is a crucial component not
only for Redact, but also for Redact-enabled websites.

6.1 Static Web Page

This tutorial begins with a web page that statically displays redacted user data. The website will be a contact page
where a user can enter their name, phone number, and social security number, all of which are stored in an encrypted
form by Redact. This is admittedly useless as a user can only view their own contact info for now, but it serves as a
good example before diving into more advanced topics.

To begin, create an HTML document that contains an iframe pointing to the Redact client.:

<iframe src="http://localhost:8080/unsecure/data/.demoapp.name."></iframe>

Start the Client and Storage on your device and open the HTML document in a browser. Examine the <iframe>HTML
contents and you should see that it has been populated by the client:

<iframe src="http://localhost:8080/unsecure/data/.demoapp.name."> <!-- The <iframe>␣
→˓from the source HTML document -->

<html> <!-- The response from the Client for the unauthenticated request -->
...
<iframe id="data-frame" src="" title="secure">

<html> <!-- the response from the Client for the authenticated request -->
...
<p></p>
...

</iframe>
...

</html>
</iframe>

Note: the src of the inner iframe is added after page load using javascript. This is a workaround for a iframe caching
bug in firefox: https://bugzilla.mozilla.org/show_bug.cgi?id=354176

The data requested at the path .demoapp.name. does not yet exist, so go ahead and create a form field so the user can
add their name. Modify the iframe src to retrieve an editable form field for .demoapp.name.:

19

https://bugzilla.mozilla.org/show_bug.cgi?id=354176


redact

<iframe src="http://localhost:8080/unsecure/data/.demoapp.name.?edit=true"></iframe>

edit=true has been added as a query parameter to the Redact request, which requests an editable field from the client.
The form field is pre-populated with the existing data at the given path, and the HTML input type matches the data-type
of the stored item. The submit button triggers a secure POST request to the client, which then updates the data in the
Storage.

The form field is not visually appealing. It shows the iframes as two large bordered boxes, but the appearance can be
modified by passing in custom CSS to the Redact request and styling the outer iframe. Add a CSS stylesheet to the
HTML page and style the outer iframe to have no border:

iframe {
border: none;
height: 66px;
width: 500px;

}

Next, add a CSS query parameter to the Redact request to instruct the Client to apply the CSS to the response:

<iframe src="http://localhost:8080/unsecure/data/.demoapp.name.?edit=true&css=iframe
→˓{border:none;height:50px}"></iframe>

Now, simply add a few more form fields to represent the user’s phone number and social security number, and add
labels to the page so the user knows what each field represents.:

<html>
<body>

<p>Name:</p>
<iframe src="http://localhost:8080/unsecure/data/.demoapp.name?edit=true&

→˓css=iframe{border:none;height:50px;}"></iframe>

<p>Phone Number:</p>
<iframe src="http://localhost:8080/unsecure/data/.demoapp.phonenumber?

→˓edit=true&css=iframe{border:none;height:50px;}"></iframe>

<p>Social Security Number:</p>
<iframe src="http://localhost:8080/unsecure/data/.demoapp.

→˓socialsecuritynumber?edit=true&css=iframe{border:none;height:50px;}"></iframe>
</body>

</html>

This is a simple HTML page which loads user data from the given paths, and allows the user to edit and update this data
on their Storage. To create a non-editable, display only version of the page, copy the contents of the existing HTML
page, and remove the edit=true query parameter from each iframe. Add a link or button which directs the user from
the view-only page to the editable page, and vice-versa.

20 Chapter 6. Building a Website With Redact



redact

6.2 Modern Web Application

Modern web applications use javascript to respond to user actions and modify the page, and a backend server which
responds to HTTP requests for data retrieval and updates. Because Redact data is stored and operated on in a manner
which is opaque to the website it is displayed on, the flow of data must be modified to provide a web application the
information it needs on the frontend (javascript) as well as on the backend (HTTP server).

Imagine a website that presents an alert to a user when they submit data on a form. Normally, the submit button could
have an event listener to do this.:

<button onclick="alert('Form Submitted')">Submit</button>

If the submit button is within a Redact iframe, the web page does not have access to the <button> element, and cannot
add an event listener in this manner. To solve this limitation, Redact uses JS messaging to securely inform a parent web
page that changes have been made to a Redact data field.

To understand how Redact communicates with backend HTTP servers, imagine a traditional website that maintains a
list of entries made by the user. A form field allows the user to create a new entry, which will be sent to the server
on submission. The entry will then be added to a database, and will be retrieved from the database whenever the user
loads their list of entries. With Redact, data entries cannot be directly sent to the HTTP server. They are instead sent
to the Client, which encrypts them and stores them in the Storage. In order to support backend server functionality
Redact uses “data relays”. Data relays instruct the Client to securely send information about a data entry’s Redact path
to an arbitrary HTTP server.

6.2.1 JS Messaging

The JS Messaging features allows a redacted form field to emit information to the parent page when data within Redact
is updated via the page. JS messaging utilizes the postMessage() API. Passing in a js_message query parameter to a
Client request instructs an editable Redact field to send a message to the parent page after data is successfully updated.
The contents of the message are simply the value of the js_message query parameter.

Note: The js_message query parameter must be base64-encoded and URL-encoded.

To accomplish something with the same effect as the following HTML code within a Redact iframe, the js_message
query parameter must be used. As an example, consider how a traditional website would trigger an alert on submission
of a form using events and javascript:

<button onclick="alert('Form Submitted')">Submit</button>

Use the js_message query parameter when retrieving an editable field:

<iframe src="http://localhost:8080/unsecure/data/.demoapp.name.?edit=true&js_
→˓message=c3VibWl0"></iframe>

The Client response will contain a form which posts the message "submit" to the parent page when the submit button
is clicked. Listen for the window:message event to trigger the alert javascript:

window.onmessage = (event) => {
try {

decodedMessage = atob(event.data);
if (decodedMessage === 'submit') {

alert("Form Submitted");
(continues on next page)

6.2. Modern Web Application 21

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/message_event


redact

(continued from previous page)

}
} catch (error) {

// expected when the event.message is not a base64 encoded string
}

};

6.2.2 Data Relaying

Data relaying allows a Redact-enabled website to link an API endpoint to a Redact data field such that the API endpoint
receives a HTTP POST request containing the path of the data when an edit is submitted. When the data at a given path
is created or updated, the client orchestrates a request to the endpoint at the given relay URL. If the request succeeds, it
is transparent to the user. If the request fails, an error is presented to the user to inform them that, although the data in
their Storage was updated, the action was not entirely successfully as the backing server did not acknowledge the relay.

To configure a Redact relay, add an endpoint to the backend HTTP server which will receive POST requests with a
JSON body representing the path of the data that was updated. A user’s Client will send an HTTP POST request with
a request body in the form:

{
"path": "<DATA PATH>"

}

Next, add the relay_url query parameter to the Redact client request within an iframe:

<iframe src="http://localhost:8080/unsecure/data/.demoapp.name.?edit=true&relay_url=https
→˓%3A%2F%2Ffoo.bar%2Fredact%2Frelay"></iframe>

When this data is submitted, a POST request will be made to https://foo.bar/redact/relaywith the JSON body:

{
"path": ".demoapp.name."

}

Note how the request does not have any information identifying a user. Redact users identify themselves using certifi-
cates, and relays are no different. The recommended approach for differentiating between users is to establish a mutual
TLS connection with incoming relay requests and use attributes of the client cert to identify the user. In Redact, a user
can have multiple devices each with a separate key, all signed by the user’s key. Therefore, to identify the user use
the value of the certificate’s Authority Key Identifier. This will uniquely identify the user across multiple devices. For
more information on how cryptography is used in Redact, see Cryptography.

6.2.3 User Sessions

Data relays allow a backend server to identify which user is updating their data on a page, but this is not very useful if
a website cannot identify which user is visiting the page and making non-relay requests to the server (for example, to
retrieve all Redact data entry paths that have been relayed for a given user). The server needs an authenticated method
by which to identify a user. This is where user sessions come in handy. They provide a way for a Redact-enabled
website to make HTTP requests on behalf of a user identified by their certificate.

User sessions provide a JWT token for a website’s frontend to be passed along with HTTP requests to the backend
server. The JWT tokens are generated and signed by the website’s own backend server upon establishing a mutual TLS
connection with the Client. This way, the server can validate that a request coming from the UI is coming from the
same user that established a mutual TLS between their client and the server on the same device.

22 Chapter 6. Building a Website With Redact

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.1
https://docs.redact.ws/en/latest/cryptography.html


redact

This approach to sessions with Redact utilizes the Client’s proxy endpoint. The proxy endpoint accepts requests directly
to the client (as opposed to all other requests which must be requested from within an iframe), and forwards the request
as a GET request to a given endpoint. This request is optionally performed with mutual TLS, allowing the given
endpoint to uniquely identify the user. The response from the endpoint is then passed back as the response to the proxy
request. By responding to this request with a signed JWT token that contains the information needed to identify a user
(such as the Authority Key Identifier), the server can verify that subsequent requests with the JWT token are being
made on behalf of the same Redact user that is represented in the JWT payload.

6.2. Modern Web Application 23

https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.1


redact

24 Chapter 6. Building a Website With Redact



CHAPTER

SEVEN

ADVANCED FEATURES

Redact is a set of applications that allows developers to build websites with end-to-end encrypted data. When leveraging
Redact, website owners are able to display secure user data on their webpages without having access to that data
themselves. Securing websites in this way is beneficial to both the user and the website owner as it protects from
data leaks, allows complete control and knowledge over who has access to data, and standardizes secure authentication
mechanisms that don’t rely on passwords.

Note: The two applications that enable a user to store and retrieve encrypted data are redact-client and redact-store.

The Client runs on the user’s device and handles requests from the browser for secure data display. The Storage is a
server that fronts some backing database and provides a stable API for CRUD operations on encrypted data.

The redact-crypto library provides all important cryptographic and storage abstractions.

Redact protects from data leaks as it removes the website’s need to store sensitive data entirely. In a traditional website,
the website owner maintains a database which allows them to store relevant information that their users submit (such as
a phone number or address). When a user visits the website, this information is fetched from the database and displayed.
By storing the data of many users in a centralized database, a single breach can expose the data of all users of a site. A
user must trust that the website has implemented appropriate protection measures.

In a Redact-enabled website, a user can guarantee that “Redacted” data on a webpage has been secured with strong
encryption, is only accessible to those who are explicitly granted access, and can be deleted or updated at any time. In
order to operate on the redacted data, websites maintain references to it. For example, in a traditional website, there
might be a database field called “name” with the value “Alice Doe”. In the Redact-enabled website, the database field
would still be called “name” but its value would be something like “.profile.name.”. This value is interpreted by the
Client (installed on the user’s device), and is translated into the readable data in a way that makes it impossible for the
website owner to read it unless granted access by the user. With no data to steal, the website owner no longer has to
worry about the liability of data leaks, and users can rest assured in knowing that the potential attack surface for their
data is greatly reduced to a single, higly-secure, encrypted location.

This tight control over data storage then empowers users to make explicit decisions as to who has access to their data.
For example, imagine the Redact-enabled website in question is a portal used by healthcare providers to share test
results and track prescriptions. A user may want that data to be shared with all treating medical professionals, and
would want to make sure they all have access to the most up-to-date set of data. With Redact, all of a user’s data can be
stored in their personal Storage while still being accessible on the health portal. Not only can a user see their own data,
they can also grant access to health professionals or institutions so they can view the data in a Redact-enabled portal as
well. Furthermore, it’s all updated in one place, so everyone always gets the same copy.

In order to identify different users to each other and secure this data storage, Redact is paired with a strong authenti-
cation and authorization framework. It employes a public-key infrastructure and assigns keypairs to individual users,
and certificate authorities to organizations. At the lowest level, users can authenticate themselves anonymously to any
Redact service using mutual-TLS requests with a self-signed Client certificate. Depending on the authorization re-
quirements of the request, this request could be accepted, or it could be denied. By augmenting the certificate with

25

https://github.com/pauwels-labs/redact-client
https://github.com/pauwels-labs/redact-store
https://github.com/pauwels-labs/redact-crypto


redact

metadata and having it be signed by a certificate authority recognized by the server, any arbitrary authorization check
can be performed to further approve or deny the request. The management of certificates and secret keys is entirely
handled by Redact and eliminates the need for passwords or user-initiated login procedures.

When put together, the components of Redact represent a method for storing and handling user data that fundamentally
changes the model for data ownership that has existed since the beginning of the internet. The expectation has always
been for users to generate data that is then stored and managed by the website owner. This creates numerous liabilities
for both the website owner and user as this data is valuable and prone to theft. In the Redact model, user-generated
data remains owned by the user but organized into a coherent interface by the website. The result is the ability to create
rich user interfaces and applications without having to implement time-consuming and expensive data protection and
authentication systems.

26 Chapter 7. Advanced Features


	Getting Started
	Setup Redact-store
	Self-hosted Storage
	Support multimedia (e.g. images, video)


	Install redact-client
	Visit Redact-enabled website

	Overview
	Secure <iframe>

	Client
	API
	GET /unsecure/data/<path>
	Path Parameters
	Query Parameters

	GET /secure/data/<path>/<token>
	Header Parameters
	Path Parameters
	Query Parameters

	POST /secure/data/<token>
	Header Parameters
	Path Parameters
	Query Parameters
	Body Parameters

	POST /proxy
	Header Parameters
	Body Parameters



	Storage
	API
	GET /<path>
	Path Parameters

	POST /
	Header Parameters
	Body Parameters



	Cryptography
	Identity
	Encryption

	Building a Website With Redact
	Static Web Page
	Modern Web Application
	JS Messaging
	Data Relaying
	User Sessions


	Advanced Features

