

Introduction

Redact is a set of applications that allows developers to build websites with
end-to-end encrypted data. When leveraging Redact, website owners are able to
display secure user data on their webpages without having access to that data
themselves. Securing websites in this way is beneficial to both the user and the
website owner as it protects from data leaks, allows complete control and
knowledge over who has access to data, and standardizes secure authentication
mechanisms that don’t rely on passwords.

Note

The two applications that enable a user to store and retrieve encrypted data are
redact-client [https://github.com/pauwels-labs/redact-client] and redact-store [https://github.com/pauwels-labs/redact-store].

The Client runs on the user’s device and handles requests from
the browser for secure data display. The Storage is a server that
fronts some backing database and provides a stable API for CRUD operations on
encrypted data.

The redact-crypto [https://github.com/pauwels-labs/redact-crypto] library provides all important cryptographic and storage
abstractions.

Redact protects from data leaks as it removes the website’s need to store
sensitive data entirely. In a traditional website, the website owner maintains a
database which allows them to store relevant information that their users submit
(such as a phone number or address). When a user visits the website, this
information is fetched from the database and displayed. By storing the data of
many users in a centralized database, a single breach can expose the data of all
users of a site. A user must trust that the website has implemented appropriate
protection measures.

In a Redact-enabled website, a user can guarantee that “Redacted” data on a
webpage has been secured with strong encryption, is only accessible to those who
are explicitly granted access, and can be deleted or updated at any time. In
order to operate on the redacted data, websites maintain references to it.
For example, in a traditional website, there might be a database field called
“name” with the value “Alice Doe”. In the Redact-enabled website, the database
field would still be called “name” but its value would be something like
“.profile.name.”. This value is interpreted by the Client (installed on
the user’s device), and is translated into the readable data in a way that makes
it impossible for the website owner to read it unless granted access by the
user. With no data to steal, the website owner no longer has to worry about the
liability of data leaks, and users can rest assured in knowing that the
potential attack surface for their data is greatly reduced to a single,
higly-secure, encrypted location.

This tight control over data storage then empowers users to make explicit
decisions as to who has access to their data. For example, imagine the
Redact-enabled website in question is a portal used by healthcare providers to
share test results and track prescriptions. A user may want that data to be
shared with all treating medical professionals, and would want to make sure they
all have access to the most up-to-date set of data. With Redact, all of a user’s
data can be stored in their personal Storage while still being accessible
on the health portal. Not only can a user see their own data, they can also
grant access to health professionals or institutions so they can view the data
in a Redact-enabled portal as well. Furthermore, it’s all updated in one place,
so everyone always gets the same copy.

In order to identify different users to each other and secure this data storage,
Redact is paired with a strong authentication and authorization framework. It
employes a public-key infrastructure and assigns keypairs to individual users,
and certificate authorities to organizations. At the lowest level, users can
authenticate themselves anonymously to any Redact service using mutual-TLS
requests with a self-signed Client certificate. Depending on the
authorization requirements of the request, this request could be accepted, or it
could be denied. By augmenting the certificate with metadata and having it be
signed by a certificate authority recognized by the server, any arbitrary
authorization check can be performed to further approve or deny the request. The
management of certificates and secret keys is entirely handled by Redact and
eliminates the need for passwords or user-initiated login procedures.

When put together, the components of Redact represent a method for storing and
handling user data that fundamentally changes the model for data ownership that
has existed since the beginning of the internet. The expectation has always
been for users to generate data that is then stored and managed by the website
owner. This creates numerous liabilities for both the website owner and user as
this data is valuable and prone to theft. In the Redact model, user-generated
data remains owned by the user but organized into a coherent interface by the
website. The result is the ability to create rich user interfaces and
applications without having to implement time-consuming and expensive data
protection and authentication systems.

Getting Started

Broadly speaking, the steps to get started with Redact are as follows:

	Get access to a redact-store [https://github.com/pauwels-labs/redact-store] instance

	Install the redact-client [https://github.com/pauwels-labs/redact-client] locally on a device

	Point your browser to a Redact-enabled website

Setup Redact-store

The storage service can be either self-hosted or provided by a third-party.
Since it only stores encrypted data, the provider of the storage service does
not need to be trusted, but should provide a reasonable level of protection
against unauthorized requests.

A self-hosted storage is fairly easy to setup, and primarily involves procuring
a database (currently only MongoDB is supported) and standing up the
redact-store server to connect to it.

A third-party storage will simply provide a URL for the Client to connect to.

Self-hosted Storage

	Get access to a MongoDB instance

	Sign up for a free, fully-managed instance at mongodb.com [https://mongodb.com] (easy, quick)

	Set up an instance on your local device or host your own instance (harder,
time-consuming, more customizable)

	Minimum supported MongoDB version is 3.6+

	If running MongoDB locally and the storage cannot connect, try using
127.0.0.1 in the connection string instead of a hostname

	Install Rust: https://www.rust-lang.org/tools/install

	git clone https://github.com/pauwels-labs/redact-store.git

	echo "export REDACT_DB_URL=\"<mongo connection string>\"" >>
config/config.env

	echo "export REDACT_DB_NAME=\"<db name>\"" >> config/config.env

	source config/config.env

	cargo r

The port and address listened on by the storage server will be provided to the
client.

Support multimedia (e.g. images, video)

Redact leverages object storage services in order to store large
chunks of data that are unlikely or difficult to fit in a traditional
database.

Currently, the only supported object storage is a Google Cloud
Storage [https://cloud.google.com/storage] bucket.

In order to add this functionality to your storer, do the following:

	Sign up for Google Cloud and provision a Google Cloud Storage bucket

	Go to the Permissions tab of the bucket details page and add a new
principal with Storage Legacy Bucket Writer permissions

	Go to the IAM & Admin section of Google Cloud and click on Service
Accounts

	Click on Keys > Create new key, and create a new JSON key

	Download the key and save it to a safe place on your computer

	echo "export SERVICE_ACCOUNT=\"<path to file downloaded>\"" >> config/config.env

	echo "export REDACT_GOOGLE_STORAGE_BUCKET_NAME=\"<bucket name>\"" >> config/config.env

	source config/config.env

	cargo r

Install redact-client

	git clone https://github.com/pauwels-labs/redact-client.git

	Provide the Storage URL in config/config.yaml#storage.url

	If you set-up your own storage server using the steps above, the URL
will likely be https://localhost:8081

	If you set-up your own storage server, notice that the config
allows for specifying a custom server CA certificate at
storage.tls.server.ca.filepath. You MUST copy the CA
certificate generated by the storage server to this
location. Within the redact-store directory, it should be located
at tls/server/cert/ca.pem, copy this file to the client at
certs/storer-ca.pem.

	cargo r

Visit Redact-enabled website

We have an example website that allows you to demo Redact’s current
feature-set called Redact Feed [https://redact-feed-ui.dev.pauwelslabs.com], which allows you to post text and
multimedia and see those posts displayed. Redact Feed will soon
support data sharing and other social features.

Once the Client is setup locally and points to a
working storage instance, Redact-enabled websites will “just work”
(TM). The Client handles generation and coordination of
cryptographic material with no further input.

Warning

Redact currently only supports storing keys unencrypted on the file
system. Support for hardware and software key vaults is upcoming.

Overview

The best way to begin understanding how Redact works is to understand, at a
high-level, what the general flow of information is when a user visits a
Redact-enabled website. Below is a diagram outlining this flow.

[image: Overview of Redact architecture]

	Alice opens her browser and visits a Redact-enabled website (e.g. www.foo.com).

	The website’s server responds with the contents of the page, which include
<iframe> elements for instances where the website displays “Redacted” data.

	Alice’s browser issues a request to the local Client for each iframe, each of
which represents a different piece of secured data.

	The Client receives each request and forwards them to the Storage.

	The Storage instance responds to each request with the data it has stored at
that path. These pieces of data are typically encrypted and cannot be
decrypted by the Storage instance itself.

	The Client decrypts the encrypted data, then responds to the local request
from the browser with the decrypted text in a secure iframe. The user can now
see the secure data, but the host website cannot.

Secure <iframe>

Although there already exist several end-to-end encrypted applications in use
commercially today, none of them quite solve the problem of endpoint security.
These services provide strong security both in transit and at rest using their
encryption protocols, but there still remains the issue of displaying the actual
data to the user: data must be decrypted and placed on the screen at some point,
and existing end-to-end encryption applications maintain control over this
process. This means there is a point in the data pipeline where the user must
trust the operator of the service not to inject malicious code and exfiltrate
plaintext data.

Redact solves this issue by limiting the trusted platform to just the
browser, rather than all the websites visited on the browser. The Client
leverages <iframe> elements and CSRF tokens to allow websites to easily
interact with protected data without having to, or in fact being able to,
actually see it at any point. This technique works using
technologies that are well-proven and decades old, and requires no Javascript.

The general flow to request data to be displayed works as such:

	The website places an <iframe> element as a placeholder for the data:

<iframe src="/unsecure/data/.profile.firstName."></iframe>

There are additional parameters that can be provided which further customize
the Client’s response, but are left out here for simplicity.

[image: Web page body, with the iframe reference to a Redact path]

	The Client receives the request and does four things:

	Generates a random 256-bit session token.

	Attaches a session to the request.

	Stores the token in the session.

	Responds to the request with a session cookie containing the ID of the
request’s session and an HTML page containing another <iframe>,
attaching the token generated in step 1 to the end of the URL path, like
this:

<iframe src="/secure/data/.profile.firstName./498DF68A39A51DE648799EE13CD26D2163863FC5F43814B8895B78BBA45935A0"></iframe>

[image: Web page body after first iframe is rendered, with inner iframe referencing the Redact path and session token]

	Upon rendering the iframe response, the browser makes another request to the
Client, once again according to the src of the inner <iframe>.
The Client receives the request and attempts to respond with the decrypted
data:

	Retrieves the session based on the session ID provided in the request
cookie header.

	Compare the token in the URL of the request with the token stored in the
session.

	If the tokens match, it proceeds with fetching the requested data,
decrypting it, and responding with an HTML page containing the
plaintext. If the tokens do not match, the request is rejected.

[image: Web page body after secure iframe is rendered, with the decrypted Redact data]
This process allows the Client to ensure that the only time it responds
with plaintext data is when the request for the data is coming from itself.

Imagine that a malicious website, acme.com, would like to exfiltrate Alice’s
redacted data when she visits. In order to do so, they place a script on
acme.com that runs when Alice visits the website and makes an AJAX
request to the Alice’s Client for data at the path
.profile.firstName.. This request succeeds and responds with a 200 status
code, but the returned HTML just contains an <iframe> element, this time
with a token appended to the end of the src attribute. The script then makes
a second AJAX request with the token appended at the end this time.

This request will fail. It isn’t enough to provide the correct token at the end
of the request path, that request must also be paired with a session that
contains the same token. This pairing occurs by attaching the session ID
returned by the Client in the first request as a cookie header in the second
request. Thanks to all modern browsers’ cross-origin resource sharing (CORS)
protections, it is impossible for a website located at acme.com to fetch the
session ID set by a website not at the same domain.

Warning

Cookies set by a domain other than the primary domain being visited
are classified as “third-party cookies” by browser vendors.
Browsers are increasingly placing limitations on these cookies, the
latest being that such cookies MUST be transferred over a TLS
connection. Currently the connection between browser and
Client, both on the user’s local device, is not secured by
TLS. In the future, it may be necessary to add a self-signed
certificate generated by the Client to the browser in order
to secure that connection.

Client

The purpose of the Client is to host a small server on the
user’s device (e.g. phone, laptop) to respond to requests for private
data. It listens on a local port, currently defaulted to
::8080, and responds to these requests with a secure <iframe>
buffer that displays the data without allowing the website to read
it back to itself.

Note

For more information on how the secure <iframe> buffers
work see Secure <iframe>.

API

GET /unsecure/data/<path>

An unsecure request to the client for data at a given path. The response is not
the data itself, but an HTML document with an iframe which makes a secure
request to retrieve the data.

Path Parameters

	Parameter

	Required?

	Description

	Example

	path

	Required

	A jsonpath-style string prepended and appended by a period which represents the path of the data

	.someObj.someVal.

Query Parameters

	Parameter

	Required?

	Description

	Default

	Example

	css

	Optional

	A URL-encoded CSS block meant to style the displayed data. The HTML to style can be found here [https://github.com/pauwels-labs/redact-client/tree/main/static/secure.handlebars].

	
	iframe%7Bborder%3Anone%3B%7D

	edit

	Optional

	A boolean indicating whether the data will be displayed in an editable form field. If true, the value will be displayed in a submittable input box appropriate for its data type.

	false

	true

	data_type

	Required

	specifies the type of data to expect; this is particularly useful when creating new data that does not yet have a type. The value can be one of:

	Bool

	U64

	I64

	F64

	String

	
	Media
	
	
	A Binary file that can be rendered in the browser. Currently supported file types are:
	
	image/jpeg

	image/png

	image/gif

	image/apng

	image/avif

	image/svg+xml

	image/webp

	video/mpeg

	video/mp4

	
	String

	relay_url

	Optional

	the URL endpoint to which a POST HTTP request will be sent upon submission of editable data. This would typically be a URL controlled by the host of the Redact-enabled website and used for internal bookkeeping.

	
	https://foo.com/redact/relay

	js_message

	Optional

	A base64-encoded and URL-encoded message which the editable Redact field will send to the parent page after data is successfully submitted. Refer to JS Messaging for more details.

	
	Y3JlYXRlZA%3D%3D

	js_height_msg_prefix

	Optional

	A base64-encoded and URL-encoded message which a displayed Redact field will prepend to the pixel height of the rendered data, then send to the parent page. This can be used to dynamically adjust the height of a redact iframe on a web page based on the size of the rendered data.

	
	aGVpZ2h0Oi5hYmMuOg%3D%3D

GET /secure/data/<path>/<token>

An secure request to the client for data at a given path. The response is and
HTML document displaying the contents of the data.

Header Parameters

	Header Name

	Required?

	Description

	Cookie sid

	Required

	The session ID is used internally by the Client to associate the request with a session in its session store.

Path Parameters

	Parameter

	Required?

	Description

	Example

	path

	Required

	A jsonpath-style string prepended and appended by a period which represents the path of the data

	.someObj.someVal.

	token

	Required

	A random, 256-bit, upper-case alphanumeric CSRF token that is generated and used internally by the Client

	

Query Parameters

Note

These query parameters are identical to those of GET /data/<path>
and are typically automatically included in this request by the Client.

	Parameter

	Required?

	Description

	Default

	Example

	css

	Optional

	A URL-encoded CSS block meant to style the displayed data. The HTML to style can be found here [https://github.com/pauwels-labs/redact-client/tree/main/static/secure.handlebars].

	
	iframe%7Bborder%3Anone%3B%7D

	edit

	Optional

	A boolean indicating whether the data will be displayed in an editable form field. If true, the value will be displayed in a submittable input box appropriate for its data type.

	false

	true

	data_type

	Required

	specifies the type of data to expect; this is particularly useful when creating new data that does not yet have a type. The value can be one of:

	Bool

	U64

	I64

	F64

	String

	
	Media
	
	
	A Binary file that can be rendered in the browser. Currently supported file types are:
	
	image/jpeg

	image/png

	image/gif

	image/apng

	image/avif

	image/svg+xml

	image/webp

	video/mpeg

	video/mp4

	
	String

	relay_url

	Optional

	the URL endpoint to which a POST HTTP request will be sent upon submission of editable data. This would typically be a URL controlled by the host of the Redact-enabled website and used for internal bookkeeping.

	
	https://foo.com/redact/relay

	js_message

	Optional

	A base64-encoded and URL-encoded message which the editable Redact field will send to the parent page after data is successfully submitted. Refer to JS Messaging for more details.

	
	Y3JlYXRlZA%3D%3D

POST /secure/data/<token>

A secure request to the client to update existing data or create new data at a
given path.

Header Parameters

	Header Name

	Required?

	Description

	Cookie sid

	Required

	The session ID is used internally by the Client to associate the request with a session in its session store.

	Content-Type

	Required

	
	x-www-form-urlencoded: For types other than Media

	multipart/form-data: For the Media data type.

Path Parameters

	Parameter

	Required?

	Description

	Example

	token

	Required

	A random, 256-bit, upper-case alphanumeric CSRF token that is generated and used internally by the Client

	

Query Parameters

	Parameter

	Required?

	Description

	Default

	Example

	css

	Optional

	A URL-encoded CSS block meant to style the displayed data. The HTML to style can be found here [https://github.com/pauwels-labs/redact-client/tree/main/static/secure.handlebars].

	
	iframe%7Bborder%3Anone%3B%7D

	edit

	Optional

	A boolean indicating whether the data will be displayed in an editable form field. If true, the value will be displayed in a submittable input box appropriate for its data type.

	false

	true

	relay_url

	Optional

	the URL endpoint to which a POST HTTP request will be sent upon submission of editable data. This would typically be a URL controlled by the host of the Redact-enabled website and used for internal bookkeeping.

	
	https://foo.com/redact/relay

Body Parameters

	Parameter

	Required?

	Description

	Example

	path

	Required

	a jsonpath-style string prepended and appended by a period

	.someObj.someVal.

	value

	Required

	The value of the data being submitted

	String

	value_type

	Required

	Specifies the type of data to expect; this is particularly useful when creating new data that does not yet have a type. The value can be one of:

	Bool

	U64

	I64

	F64

	String

	
	Media
	
	
	A Binary file that can be rendered in the browser. Currently supported file types are:
	
	image/jpeg

	image/png

	image/gif

	image/apng

	image/avif

	image/svg+xml

	image/webp

	video/mpeg

	video/mp4

	String

POST /proxy

Retrieves the response of a GET request to a given URL, which is made via the
client with mutual TLS. The root domain of the URL requested must match the
root domain of the request’s Origin header value. For more information on
how to use the Proxy API, see User Sessions.

Header Parameters

	Header Name

	Required?

	Description

	Origin

	Required

	

	Content-Type

	Required

	Must be: application/json

Body Parameters

	Parameter

	Required?

	Description

	Example

	host_url

	Required

	The URL to which to make a GET request

	https://foo.com/redact/session_create

Storage

The Storage’s purpose is to provide a public interface for the
Client to perform CRUD operations on encrypted data. It provides a stable,
public API, along with an authentication and authorization layer that allows
clients to request or modify the stored data.

An important note is that the owner of the Storage server does not need to be
trusted. The Client encrypts stored data before sending it to storage, meaning
that the storage server only ever handles ciphertexts (unless the Client is
purposefully storing public, plaintext information). This allows operation of a
multi-tenant storage service to be delegated to a third-party, reducing the
burden on users.

Warning

Currently, the storage interface is only implemented for
MongoDB. In the future, other database types will be supported.

API

GET /<path>

Retrieve data at a given path.

Path Parameters

	Parameter

	Required?

	Description

	Example

	path

	Required

	A jsonpath-style string prepended and appended by a period which represents the path of the data

	.someObj.someVal.

POST /

Upsert data at a given path.

Header Parameters

	Header Name

	Required?

	Description

	Content-Type

	Required

	Must be: application/json

Body Parameters

The body of the POST request should be a JSON-serialized Entry struct. The
definition of an Entry can be found here [https://github.com/pauwels-labs/redact-crypto/blob/main/src/entry.rs].

Cryptography

In order to secure data and provide authentication and authorization services,
Redact leverages several cryptographic systems. Asymmetric keys are used to
create unique identities that can be used to identify users or machines across
the Redact ecosystem. Symmetric keys are used to encrypt and decrypt user data.
By combining these two concepts, Redact can create portable encrypted data that
can be consumed by any device owned by a particular user.

Note

All cryptographic algorithms are currently provided by
libsodium. Symmetric keys use its xsalsa20poly1305 algorithm. Asymmetric keys
use its curve25519xsalsa20poly1305 algorithm.

In the future, other backing cryptographic libraries and algorithms will be
supported.

Identity

Core to the Redact architecture is the concept of identity. In order for a user
to give or deny access to a particular piece of data, they must at all times be
capable of identifying who is requesting their data and what permissions this
user has. In order to avoid centralization and dependance on a managed service
to keep track of who has access to what, Redact uses self-sovereign identities
in the form of asymmetric keypairs.

At the most basic level, all users have their own keypair with a self-signed
client certificate. They can use this keypair and certificate to make anonymous
requests to services that support anonymity. These requests are made using
mutual TLS to share the identity of the user. For example, when the Client
requests data from a storage server, or relays a message to a website host, it
does so using this client certificate.

In many cases, however, a service may require some form of further
authentication. For example, an internal company website may require that only
employees of the company be capable of viewing the site. To indicate that the
user belongs to a particular group, the keypair can be signed by a different
certificate authority. This certificate can also have custom metadata added that
can further identify and authorize the user.

Encryption

Redact leverages encryption to minimize the amount of time and places that your
data is available in plaintext. Its encryption framework relies on two crucial
invariants:

	Private data is only decrypted by the Client.

	Private data never exits the Client in plaintext.

By following these two rules, Redact ensures that the attack surface for
exfiltrating private data remains as small as possible.

Building a Website With Redact

This section describes in detail how to build a simple website with redacted
data. The Redact codebase is currently in alpha, and supports displaying and
storing strings, numbers, and booleans. Sharing data between Redact users is
under development and planned for a future release, but is included in this
document because it is a crucial component not only for Redact, but also for
Redact-enabled websites.

Static Web Page

This tutorial begins with a web page that statically displays redacted user
data. The website will be a contact page where a user can enter their name,
phone number, and social security number, all of which are stored in an
encrypted form by Redact. This is admittedly useless as a user can only view
their own contact info for now, but it serves as a good example before diving
into more advanced topics.

To begin, create an HTML document that contains an iframe pointing to the Redact client.:

<iframe src="http://localhost:8080/unsecure/data/.demoapp.name."></iframe>

Start the Client and Storage on your device and open the HTML
document in a browser. Examine the <iframe> HTML contents and you should see
that it has been populated by the client:

<iframe src="http://localhost:8080/unsecure/data/.demoapp.name."> <!-- The <iframe> from the source HTML document -->
 <html> <!-- The response from the Client for the unauthenticated request -->
 ...
 <iframe id="data-frame" src="" title="secure">
 <html> <!-- the response from the Client for the authenticated request -->
 ...
 <p></p>
 ...
 </iframe>
 ...
 </html>
</iframe>

Note

the src of the inner iframe is added after page load using javascript. This is a workaround for a iframe caching bug in firefox: https://bugzilla.mozilla.org/show_bug.cgi?id=354176

The data requested at the path .demoapp.name. does not yet exist, so
go ahead and create a form field so the user can add their name. Modify the
iframe src to retrieve an editable form field for .demoapp.name.:

<iframe src="http://localhost:8080/unsecure/data/.demoapp.name.?edit=true"></iframe>

edit=true has been added as a query parameter to the Redact request, which
requests an editable field from the client. The form field is pre-populated with
the existing data at the given path, and the HTML input type matches the
data-type of the stored item. The submit button triggers a secure POST request
to the client, which then updates the data in the Storage.

The form field is not visually appealing. It shows the iframes
as two large bordered boxes, but the appearance can be modified by passing in custom
CSS to the Redact request and styling the outer iframe. Add a CSS stylesheet to
the HTML page and style the outer iframe to have no border:

iframe {
 border: none;
 height: 66px;
 width: 500px;
}

Next, add a CSS query parameter to the Redact request to instruct the Client to
apply the CSS to the response:

<iframe src="http://localhost:8080/unsecure/data/.demoapp.name.?edit=true&css=iframe{border:none;height:50px}"></iframe>

Now, simply add a few more form fields to represent the user’s phone number and
social security number, and add labels to the page so the user knows what each field represents.:

<html>
 <body>
 <p>Name:</p>
 <iframe src="http://localhost:8080/unsecure/data/.demoapp.name?edit=true&css=iframe{border:none;height:50px;}"></iframe>

 <p>Phone Number:</p>
 <iframe src="http://localhost:8080/unsecure/data/.demoapp.phonenumber?edit=true&css=iframe{border:none;height:50px;}"></iframe>

 <p>Social Security Number:</p>
 <iframe src="http://localhost:8080/unsecure/data/.demoapp.socialsecuritynumber?edit=true&css=iframe{border:none;height:50px;}"></iframe>
 </body>
</html>

This is a simple HTML page which loads user data from the given paths, and
allows the user to edit and update this data on their Storage. To create
a non-editable, display only version of the page, copy the contents of the
existing HTML page, and remove the edit=true query parameter from each
iframe. Add a link or button which directs the user from the view-only page to
the editable page, and vice-versa.

Modern Web Application

Modern web applications use javascript to respond to user actions and modify the
page, and a backend server which responds to HTTP requests for data retrieval
and updates. Because Redact data is stored and operated on in a manner which is
opaque to the website it is displayed on, the flow of data must be modified to
provide a web application the information it needs on the frontend (javascript)
as well as on the backend (HTTP server).

Imagine a website that presents an alert to a user when they submit data on a
form. Normally, the submit button could have an event listener to do this.:

<button onclick="alert('Form Submitted')">Submit</button>

If the submit button is within a Redact iframe, the web page does not have
access to the <button> element, and cannot add an event listener in this
manner. To solve this limitation, Redact uses JS messaging to securely inform a
parent web page that changes have been made to a Redact data field.

To understand how Redact communicates with backend HTTP servers, imagine a
traditional website that maintains a list of entries made by the user. A form
field allows the user to create a new entry, which will be sent to the server on
submission. The entry will then be added to a database, and will be retrieved
from the database whenever the user loads their list of entries. With Redact,
data entries cannot be directly sent to the HTTP server. They are instead sent
to the Client, which encrypts them and stores them in the Storage.
In order to support backend server functionality Redact uses “data relays”.
Data relays instruct the Client to securely send information about a data
entry’s Redact path to an arbitrary HTTP server.

JS Messaging

The JS Messaging features allows a redacted form field to emit information to
the parent page when data within Redact is updated via the page. JS messaging
utilizes the postMessage() [https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage] API. Passing in a js_message query parameter
to a Client request instructs an editable Redact field to send a message
to the parent page after data is successfully updated. The contents of the
message are simply the value of the js_message query parameter.

Note

The js_message query parameter must be base64-encoded and URL-encoded.

To accomplish something with the same effect as the following HTML code within a
Redact iframe, the js_message query parameter must be used. As an example,
consider how a traditional website would trigger an alert on submission of a
form using events and javascript:

<button onclick="alert('Form Submitted')">Submit</button>

Use the js_message query parameter when retrieving an editable field:

<iframe src="http://localhost:8080/unsecure/data/.demoapp.name.?edit=true&js_message=c3VibWl0"></iframe>

The Client response will contain a form which posts the message
"submit" to the parent page when the submit button is clicked. Listen for
the window:message event [https://developer.mozilla.org/en-US/docs/Web/API/Window/message_event] to trigger the alert javascript:

window.onmessage = (event) => {
 try {
 decodedMessage = atob(event.data);
 if (decodedMessage === 'submit') {
 alert("Form Submitted");
 }
 } catch (error) {
 // expected when the event.message is not a base64 encoded string
 }
};

Data Relaying

Data relaying allows a Redact-enabled website to link an API endpoint to a
Redact data field such that the API endpoint receives a HTTP POST request
containing the path of the data when an edit is submitted. When the data at a
given path is created or updated, the client orchestrates a request to the
endpoint at the given relay URL. If the request succeeds, it is transparent to
the user. If the request fails, an error is presented to the user to inform
them that, although the data in their Storage was updated, the action was
not entirely successfully as the backing server did not acknowledge the relay.

To configure a Redact relay, add an endpoint to the backend HTTP server which
will receive POST requests with a JSON body representing the path of the data
that was updated. A user’s Client will send an HTTP POST request with a
request body in the form:

{
 "path": "<DATA PATH>"
}

Next, add the relay_url query parameter to the Redact client request within an
iframe:

<iframe src="http://localhost:8080/unsecure/data/.demoapp.name.?edit=true&relay_url=https%3A%2F%2Ffoo.bar%2Fredact%2Frelay"></iframe>

When this data is submitted, a POST request will be made to
https://foo.bar/redact/relay with the JSON body:

{
 "path": ".demoapp.name."
}

Note how the request does not have any information identifying a user. Redact
users identify themselves using certificates, and relays are no different. The
recommended approach for differentiating between users is to establish a mutual
TLS connection with incoming relay requests and use attributes of the client
cert to identify the user. In Redact, a user can have multiple devices each with
a separate key, all signed by the user’s key. Therefore, to identify the user
use the value of the certificate’s Authority Key Identifier [https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.1]. This will
uniquely identify the user across multiple devices. For more information on how
cryptography is used in Redact, see Cryptography [https://docs.redact.ws/en/latest/cryptography.html].

User Sessions

Data relays allow a backend server to identify which user is updating their data
on a page, but this is not very useful if a website cannot identify which user
is visiting the page and making non-relay requests to the server (for example,
to retrieve all Redact data entry paths that have been relayed for a given
user). The server needs an authenticated method by which to identify a user.
This is where user sessions come in handy. They provide a way for a
Redact-enabled website to make HTTP requests on behalf of a user identified by
their certificate.

User sessions provide a JWT token for a website’s frontend to be passed along
with HTTP requests to the backend server. The JWT tokens are generated and
signed by the website’s own backend server upon establishing a mutual TLS
connection with the Client. This way, the server can validate that a
request coming from the UI is coming from the same user that established a
mutual TLS between their client and the server on the same device.

This approach to sessions with Redact utilizes the Client’s proxy endpoint.
The proxy endpoint accepts requests directly to the client (as opposed to all other
requests which must be requested from within an iframe), and forwards the request
as a GET request to a given endpoint. This request is optionally performed with
mutual TLS, allowing the given endpoint to uniquely identify the user. The
response from the endpoint is then passed back as the response to the proxy
request. By responding to this request with a signed JWT token that contains the
information needed to identify a user (such as the Authority Key Identifier [https://datatracker.ietf.org/doc/html/rfc5280#section-4.2.1.1]),
the server can verify that subsequent requests with the JWT token are being made on
behalf of the same Redact user that is represented in the JWT payload.

Advanced Features

Index

 _images/overview.png
Browser ‘?@—’: Web Server

Personal

Redact
Storage

_images/iframe_2.png
<iframe src="/data/.profile.firstName.">

iframe src="/data/.profile.firstName./{TOKEN}">

EnssmssEssEssEssEssEssEssEssEssEssEssmssnmsmnnnns

_images/iframe_3.png
T

_static/minus.png

_static/plus.png

_static/file.png

_static/images/iframe_1.png
<iframe src="/data/.profile.firstName.">

_images/iframe_1.png
<iframe src="/data/.profile.firstName.">

_static/images/iframe_2.png
<iframe src="/data/.profile.firstName.">

iframe src="/data/.profile.firstName./{TOKEN}">

EnssmssEssEssEssEssEssEssEssEssEssEssmssnmsmnnnns

nav.xhtml

 Table of Contents

 		
 Introduction

_static/images/iframe_3.png
T

_static/images/overview.png
Browser ‘?@—’: Web Server

Personal

Redact
Storage

